Abstract

Tetracycline (TC) is an antibiotic that is recently found as an emerging pollutant with low biodegradability. Biodegradation shows great potential for TC dissipation. In this study, two TC-degrading microbial consortia (named SL and SI) were respectively enriched from activated sludge and soil. Bacterial diversity decreased in these finally enriched consortia compared with the original microbiota. Moreover, most ARGs quantified during the acclimation process became less abundant in the finally enriched microbial consortia. Microbial compositions of the two consortia as revealed by 16 S rRNA sequencing were similar to some extent, and the dominant genera Pseudomonas, Sphingobacterium, and Achromobacter were identified as the potential TC degraders. In addition, consortia SL and SI were capable of biodegrading TC (initial 50 mg/L) by 82.92% and 86.83% within 7 days, respectively. They could retain high degradation capabilities under a wide pH range (4−10) and at moderate/high temperatures (25–40 °C). Peptone with concentrations of 4–10 g/L could serve as a desirable primary growth substrate for consortia to remove TC through co-metabolism. A total of 16 possible intermediates including a novel biodegradation product TP245 were detected during TC degradation. Peroxidase genes, tetX-like genes and the enriched genes related to aromatic compound degradation as revealed by metagenomic sequencing were likely responsible for TC biodegradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call