Abstract
Chimeric antigen receptor cell therapy is a successful immunotherapy for the treatment of blood cancers. However, hurdles in their manufacturing remain including efficient isolation and purification of the T-cell starting material. Herein, we describe a one-step separation based on inertial spiral microfluidics for efficient enrichment of T-cells in B-cell acute lymphoblastic leukemia (ALL) and B-cell chronic lymphocytic leukemia patient's samples. In healthy donors used to optimize the process, the lymphocyte purity was enriched from 65% (SD ± 0.2) to 91% (SD ± 0.06) and T-cell purity was enriched from 45% (SD ± 0.1) to 73% (SD ± 0.02). Leukemic samples had higher starting B-cells compared to the healthy donor samples. Efficient enrichment and recovery of lymphocytes and T-cells were achieved in ALL samples with B-cells, monocytes and leukemic blasts depleted by 80% (SD ± 0.09), 89% (SD ± 0.1) and 74% (SD ± 0.09), respectively, and a 70% (SD ± 0.1) T-cell recovery. Chronic lymphocytic leukemia samples had lower T-cell numbers, and the separation process was less efficient compared to the ALL. This study demonstrates the use of inertial microfluidics for T-cell enrichment and depletion of B-cell blasts in ALL, suggesting its potential to address a key bottleneck of the chimeric antigen receptor-T manufacturing workflow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.