Abstract
Evidence has indicated that ovarian epithelial cancer-type cells under serum-free culture conditions can form spheroid cells and exhibit characteristics expected of cancer stem-like cells (CSCs). However, the mechanism by which differentiated ovarian cancer cells acquire stem-cell properties during CSC enrichment has needed to be elucidated. Recent studies have demonstrated that induction of epithelial to mesenchymal transition (EMT) can generate CSCs and be associated with tumour aggressiveness and metastasis. Ovarian epithelial cancer cell lines, SKOV3 and HO8920, were cultured for spheroid cells and adherent cells. CSC enrichment was investigated using MTT assay, flow cytometery and qRT-PCR and expression level of PI3K/AKT pathway components was analysed by western blotting. Compared to adherent cells, the spheroid cells expressed mesenchymal markers highly and exhibited significantly more motility; we also observed increases in phosphate AKT1 levels in the spheroid cells. Moreover, transfection of miR-20a or miR-200c led to corresponding reduction in endogenous PTEN protein, while AKT1 and phosphate AKT1 levels were upregulated in miRNAs-transfected cells. Finally, PI3K/AKT pathway inhibitor LY294002 reduced expressions of mesenchymal markers and stem-cell gene activity in spheroid cells, enhancing sensitivity of spheroid cells to paclitaxel treatment. Our findings demonstrate that EMT contributed to enrichment of ovarian CSCs in vitro, making EMT targeting in epithelial ovarian cancer a novel therapeutic option.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.