Abstract

Dendritic cells (DCs) are antigen-presenting cells (APCs) that shape innate and adaptive immunity. There are multiple subsets of DCs distinguished according to their phenotype and functional specialization. DCs are present in lymphoid organs and across multiple tissues. However, their frequency and numbers at these sites are very low making their functional study difficult. Multiple protocols have been developed to generate DCs in vitro from bone marrow progenitors, but they do not fully recapitulate DC complexity found in vivo. Therefore, directly amplifying endogenous DCs in vivo appears as an option to overcome this specific caveat. In this chapter, we describe a protocol to amplify murine DCs in vivo by the injection of a B16 melanoma cell line expressing the trophic factor FMS-like tyrosine kinase 3 ligand (Flt3L). We have also compared two methods of magnetic sorting of amplified DCs, both giving high yields of total murine DCs, but different representation of the main DC subsets found in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call