Abstract

The presence of small numbers of fetal nucleated red cells in the maternal circulation has been a stimulus for the development of technologies for non-invasive prenatal genetic analysis. Our laboratory has been assessing the feasibility of density gradient centrifugation followed by magnetic activated cell sorting (MACS) of cells expressing CD32 and CD45, to deplete maternal nucleated blood cells. We have examined the efficiency of each of the steps of this procedure using cord blood from term pregnancies as a source of nucleated red blood cells. Cord blood was shown to contain highly variable numbers of nucleated red cells. Three different density gradients were examined. There was no major difference in the performances of the double and triple gradients. Density gradient centrifugation resulted in enrichments of nucleated red blood cells of about 1000-fold relative to the total cell count. However, it was apparent that the selection of the cell layers which were most enriched for these cells would result in significant losses of nucleated red cells in other layers. MACS sorting of cells using CD45 resulted in white cell depletions ranging from 7 to 34-fold. These data provide a foundation for comparison with other methods and for optimization of the MACS technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call