Abstract

BackgroundCotton (Gossypium hirsutum) is one of the most important economic crops and provides excellent fibers for textile manufacture. In addition to its industrial and agricultural importance, the fiber cell (plant trichome) also is a biological model system for exploring gene expression and regulation. Small RNAs regulate many aspects of plant growth and development. However, whether small RNAs are involved in regulation of fiber cell development is unknown.ResultsWe adopted a deep sequencing approach developed by Solexa (Illumina Inc.) to investigate global expression and complexity of small RNAs during cotton fiber initiation and development. We constructed two small RNA libraries prepared from wild type (WT) and fuzz/lintless (fl Mutant in the WT background) cotton ovules, respectively. Each library was sequenced individually and generated more than 6-7 million short sequences, resulting in a total of over 13 million sequence reads. At least 22 conserved candidate miRNA families including 111 members were identified. Seven families make up the vast majority of expressed miRNAs in developing cotton ovules. In total 120 unique target genes were predicted for most of conserved miRNAs. In addition, we identified 2 cell-type-specific novel miRNA candidates in cotton ovules. Our study has demonstrated significant differences in expression abundance of miRNAs between the wild-type and mutant, and suggests that these differentially expressed miRNAs potentially regulate transcripts distinctly involved in cotton fiber development.ConclusionThe present study is the first to deep sequence the small RNA population of G. hirsutum ovules where cotton fibers initiate and develop. Millions of unique miRNA sequences ranging from 18~28 nt in length were detected. Our results support the importance of miRNAs in regulating the development of different cell types and indicate that identification of a comprehensive set of miRNAs in cotton fiber cells would facilitate our understanding of the regulatory mechanisms for fiber cell initiation and elongation.

Highlights

  • Cotton (Gossypium hirsutum) is one of the most important economic crops and provides excellent fibers for textile manufacture

  • We constructed two small RNA libraries prepared from wild type (WT) and fuzz/lintless (Mutant in the same background) cotton ovules, respectively

  • Analysis of sequences Previous studies have demonstrated that cotton fiber development is a complex process that involves a large number of gene expression and regulation [6,7,26]

Read more

Summary

Introduction

Cotton (Gossypium hirsutum) is one of the most important economic crops and provides excellent fibers for textile manufacture. Whether small RNAs are involved in regulation of fiber cell development is unknown. MicroRNAs (miRNAs) are a class of short (~21 nt), endogenous non-coding small RNAs that have base pair sequences complementary with specific target genes to repress their translation or induce their degradation. Several other classes of small RNAs ( known as small interacting RNAs, siRNAs), distinguished by their origin and biological function, have been identified. These include heterochromatic siRNAs, trans-acting siRNAs (ta-siRNAs), natural antisense siRNAs (nat-siRNAs), Piwi-interacting RNAs [4], and a recently identified class of small RNAs associated with gene promoters (PASRs) and 3' termini (TASRs) [5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.