Abstract

Motivation: Commonly used gene enrichment analysis methods, such as Hypergeometric distribution, play an important role in the functional analysis of interesting gene lists. But the statistical significance obtained by these methods only represents the probability of error that is involved in accepting enrichment, and is not suitable to evaluate the degree of enrichment. Although there have been some methods to measure the enrichment degrees, such as relative enrichment factor, new methods are still needed to meet the requirements for comparing the degree of enrichment.Results: We developed a novel method, Enrichment Disequilibrium (ED), to measure the degree of enrichment. Enrichment equilibrium means that the interesting gene set and the known functional gene set (such as a KEGG pathway) are independent (i.e. random association). ED is defined as the degree of non-independence. Compared with the relative enrichment factor, ED has a clearer biological meaning, is a standardized indicator, and has a symmetrical interval (range from −1 to +1). It is more suitable to measure the enrichment degree. For an interesting gene set, researchers can obtain some significant functional gene sets by traditional enrichment test. Then using ED, they can compare the degree of enrichment among these significant gene sets, and prioritize them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.