Abstract
The plasma membrane proteins are critical components in cellular control and differentiation and thus are of special interest to those studying signal transduction mechanisms in all organisms. When conducting proteomic studies on membrane components of cells and tissues, the complexity is not simply confined to the large number of proteins present in the sample but also to the highly hydrophobic nature of membrane proteins containing multiple transmembrane domains. Consequently, these proteins are more difficult to analyze by mass spectrometry, particularly if protein sequence coverage is to be established. This chapter contains a method for extraction, solubilization, alkylation, proteolysis, and identification of hydrophobic integral plasma membrane proteins for large-scale proteomic analysis using strong cation exchange chromatography (SCXC) and liquid chromatography-tandem mass spectrometry (LC/MS/MS). In our approach, microsomes are isolated from plant tissue and then subjected to a two-phase extraction procedure to enrich for plasma membranes. Proteins are extracted and solubilized from the membrane using a methanol-aqueous buffer system that allows for effective reduction, cysteinyl alkylation, and tryptic digestion for subsequent SCXC-LC/MS/MS analysis. Our protocol is also amenable to isotope labeling methods to quantify integral membrane protein expression and post-translational modifications. In addition to plants, the method can be applied to other systems quite readily; thus, we anticipate that it will be of general interest to those characterizing plasma membrane proteins of any organism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.