Abstract
Trastuzumab and pertuzumab are monoclonal antibodies used in the treatment of human epidermal growth factor receptor-2 (HER2)-positive breast cancer. Therapeutic proteins may undergo chemical modifications that may affect the results of bioanalytical assays, as well as their therapeutic efficacy. Modifications may arise during production and storage, as well as after administration to patients. Studying in vivo biotransformation of monoclonal, therapeutic antibodies requires their enrichment from plasma to discriminate them from endogenous antibodies, as well as from other plasma proteins. To this end, we screened Affimer reagents for selectivity toward trastuzumab or pertuzumab. Affimer reagents are alternative binding proteins possessing two variable binding loops that are based on the human protease inhibitor stefin A or phytocystatin protein scaffolds. Affimer reagents were selected from an extensive library by phage display. The four best-performing binders for each therapeutic antibody were prioritized using a microtiter plate-based approach combined with liquid chromatography–mass spectrometry (LC–MS) in the selected reaction monitoring (SRM) mode. These Affimer reagents were immobilized via engineered 6-His or Cys tags to Ni2+- or maleimide beads, respectively. Recovery values of 70% and higher were obtained for both trastuzumab and pertuzumab when spiked at 100, 150, and 200 μg/mL concentrations in human plasma followed by trypsin digestion in the presence of 0.5% sodium deoxycholate and 10 mM dithiothreitol (DTT). Notably, the maleimide beads showed undetectable unspecific binding to endogenous immunoglobulin G (IgGs) or other plasma proteins when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enrichment method was applied to samples from stress tests of the antibodies at 37 °C to mimic in vivo conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.