Abstract

AbstractSediments act as a sink, being an integrator and an amplifier for metals in rivers, lakes and reservoirs. Thus, sediment quality has been recognized as an important indicator of aquatic pollution. The concentrations of aluminium (Al), calcium (Ca), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn) and sodium (Na) were studied in the surface sediments of Lake Chivero, Zimbabwe, to determine metal accumulation, distribution, pollution status and to distinguish natural background metal levels from human pollution sources. Sediment samples were collected from 17 locations during a two‐year (2014–2015) monitoring period during the hot–dry, hot–wet and cool–dry seasons. The overall mean metal concentrations exhibited the following decreasing order: Fe > Al>Mn > Ca>K > Mg>Na. The Mn levels for all sites and seasons were above the severe effect level (SEL). The highest metal and enrichment factor (EF) values were observed for the hot–wet season, indicating the period when the reservoir received the highest metal pollution from its catchment. The Geochemical index (Igeo) values for Mn for all seasons indicated moderately to strong contamination in sediments. The pollution load index (PLI) for all seasons indicated low pollution levels. Sediment contamination was attributed to natural sources for Al, Na and K and anthropogenic sources for Fe, Ca, Mg and Mn. The levels of studied metals in the Lake Chivero sediments are comparable to other eutrophic lentic systems. The results of the present study provide baseline information necessary for developing future metal pollution control strategies for Lake Chivero and its catchment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call