Abstract

Clostridium perfringens (C. perfringens) is a prolific toxin producer and causes a wide range of diseases in various hosts. C. perfringens is categorized into five different toxinotypes, A through E, based on the carriage of four major toxin genes. The prevalence and distribution of these various toxinotypes is understudied, especially their pervasiveness in American retail food. Of particular interest to us are the type B and D strains, which produce epsilon toxin, an extremely lethal toxin suggested to be the environmental trigger of multiple sclerosis in humans. To evaluate the presence of different C. perfringens toxinotypes in various food samples, we developed an easy method to selectively culture these bacteria without the use of an anaerobic container system only involving three culturing steps. Food is purchased from local grocery stores and transported to the laboratory under ambient conditions. Samples are minced and inoculated into modified rapid perfringens media (RPM) and incubated overnight at 37 °C in a sealed, airtight conical tube. Overnight cultures are inoculated onto a bottom layer of solid Tryptose Sulfite Cycloserine (TSC) agar, and then overlaid with a top layer of molten TSC agar, creating a "sandwiched", anaerobic environment. Agar plates are incubated overnight at 37 °C and then evaluated for appearance of black, sulfite-reducing colonies. C. perfringens-suspected colonies are removed from the TSC agar using sterile eye droppers, and inoculated into RPM and sub-cultured overnight at 37 °C in an airtight conical tube. DNA is extracted from the RPM subculture, and then analyzed for the presence of C. perfringens toxin genes via polymerase chain reaction (PCR). Depending on the type of food sampled, typically 15-20% of samples test positive for C. perfringens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.