Abstract

This work proposes a novel plasma-assisted 2D/2D g-C3N4/Ti3C2 system for treatment of organics-heavy metals composite wastewater. Unlike traditional materials in plasma system, 2D/2D g-C3N4/Ti3C2 not only improved the mass transfer efficiency of plasma by gathering both reactive species and pollutants onto the surface, but also induced photocatalytic reactions. Besides, the higher specific surface area and faster carrier separation rate can enhance the oxidation and reduction activity, and then promoted organic matter degradation and heavy metal reduction. Remarkably, the removal efficiency of sulfamethoxazole (SMX) and Cr(VI) increased by 16.5% and 73.1% respectively when introducing 2D/2D g-C3N4/Ti3C2. Roles of·OH,·H,·O2-, 1O2, e-, and h+ in SMX oxidation and Cr(VI) reduction are clarified. The primary aggregated·OH and 1O2 dominate the degradation of SMX. The influencing factors, synergistic mechanism between plasma and catalyst, and redox mechanism were clarified. This work provides a breakthrough idea for treatment of organics-heavy metals composite wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.