Abstract

For the first time, we construct an inspiral-merger-ringdown waveform model within the effective-one-body formalism for spinning, nonprecessing binary black holes that includes gravitational modes beyond the dominant $(\ell,|m|) = (2,2)$ mode, specifically $(\ell,|m|)=(2,1),(3,3),(4,4),(5,5)$. Our multipolar waveform model incorporates recent (resummed) post-Newtonian results for the inspiral and information from 157 numerical-relativity simulations, and 13 waveforms from black-hole perturbation theory for the (plunge-)merger and ringdown. We quantify the improved accuracy including higher-order modes by computing the faithfulness of the waveform model against the numerical-relativity waveforms used to construct the model. We define the faithfulness as the match maximized over time, phase of arrival, gravitational-wave polarization and sky position of the waveform model, and averaged over binary orientation, gravitational-wave polarization and sky position of the numerical-relativity waveform. When the waveform model contains only the $(2,2)$ mode, we find that the averaged faithfulness to numerical-relativity waveforms containing all modes with $\ell \leq$ 5 ranges from $90\%$ to $99.9\%$ for binaries with total mass $20-200 M_\odot$ (using the Advanced LIGO's design noise curve). By contrast, when the $(2,1),(3,3),(4,4),(5,5)$ modes are also included in the model, the faithfulness improves to $99\%$ for all but four configurations in the numerical-relativity catalog, for which the faithfulness is greater than $98.5\%$. Using our results, we also develop also a (stand-alone) waveform model for the merger-ringdown signal, calibrated to numerical-relativity waveforms, which can be used to measure multiple quasi-normal modes. The multipolar waveform model can be extended to include spin-precession, and will be employed in upcoming observing runs of Advanced LIGO and Virgo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.