Abstract

Applying iodine fertilizers to cultivate iodine-rich crops for daily intake is an effective strategy for iodine supplementation, especially for aromatic rice. Field experiments were conducted during the early season of 2021 and 2022 to evaluate the impacts of foliar application of iodine fertilizer on aromatic rice and to explore the optimal iodine fertilizer concentration. At the full heading stage, six different concentrations of sodium iodide solutions of 0% (CK), 0.010% (T1), 0.025% (T2), 0.050% (T3), 0.075% (T4), and 0.100% (T5) were applied to indica aromatic rice cultivars Meixiangzhan-2 and Xiangyaxiangzhan. The results showed that sodium iodide treatments significantly increased the iodine and sodium contents in both leaves and grains. Compared with the CK, the T1 and T2 treatments increased the 2-acetyl-1- pyrroline (2-AP) content in mature grains by 8.41%‒101.66% and 13.58%‒74.60%, respectively. Improvements in the contents of 1-pyrroline-5-carboxylic acid, proline, 1-pyrroline, and methylglyoxal, and the activity of proline dehydrogenase were also detected. Additionally, sodium iodide treatments remarkably decreased the chalky rice rate, chalkiness area, and chalkiness degree of aromatic rice, with the T2 treatment exhibiting a 17.79%‒47.42% decrease in chalkiness degree compared with the CK. Meanwhile, T1 and T2 treatments showed beneficial impacts on chlorophyll content, photosynthetic characteristics, and yield components, while T3, T4, and T5 treatments exhibited adverse effects on leaf and grain yields. The linear discriminant analysis revealed significant differences between treatments. The correlation analysis and piecewise structural equation modeling showed that the iodine and sodium influenced the photosynthetic characteristics and chlorophyll content of the leaves, thereby regulating the 2-AP biosynthesis and yield components, ultimately affecting the 2-AP content and yield. Overall, this study suggests that foliar application of 0.025% sodium iodide is an effective strategy to enrich the iodine content in rice grains, improve the grain aroma and appearance quality of aromatic rice, without detrimental effects on grain yield.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call