Abstract
Using a laboratory-scale apparatus, we enrich 28Si and produce material with 40 times less residual 29Si than previously reported. Starting from natural abundance silane gas, we offer an alternative to industrial gas centrifuges for providing materials critical for long spin coherence times in quantum information devices. Using a mass spectrometry approach, silicon ions are produced from commercial silane gas and the isotopes are separated in a magnetic sector analyzer before deposition onto a Si(1 0 0) substrate. Isotope fractions for 29Si and 30Si of <1 × 10−6 are found in the deposited films using secondary ion mass spectrometry. Additional assessments of the deposited films are also presented as we work to develop substrates and source material to support the growing silicon quantum computing community. Finally, we demonstrate modulation of the 29Si concentration in a deposited film as a precursor to dual enrichment of heterostructures and compound materials such as 28Si74Ge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.