Abstract

Certain Standardbred racehorses develop recurrent exertional rhabdomyolysis (RER-STD) for unknown reasons. We compared gluteal muscle histopathology and gene/protein expression between Standardbreds with a history of, but not currently experiencing rhabdomyolysis (N = 9), and race-trained controls (N = 7). Eight RER-STD had a few mature fibers with small internalized myonuclei, one out of nine had histologic evidence of regeneration and zero out of nine degeneration. However, RER-STD versus controls had 791/13,531 differentially expressed genes (DEG). The top three gene ontology (GO) enriched pathways for upregulated DEG (N = 433) were inflammation/immune response (62 GO terms), cell proliferation (31 GO terms), and hypoxia/oxidative stress (31 GO terms). Calcium ion regulation (39 GO terms), purine nucleotide metabolism (32 GO terms), and electron transport (29 GO terms) were the top three enriched GO pathways for down-regulated DEG (N = 305). DEG regulated RYR1 and sarcoplasmic reticulum calcium stores. Differentially expressed proteins (DEP ↑N = 50, ↓N = 12) involved the sarcomere (24% of DEP), electron transport (23%), metabolism (20%), inflammation (6%), cell/oxidative stress (7%), and other (17%). DEP included ↑superoxide dismutase, ↑catalase, and DEP/DEG included several cysteine-based antioxidants. In conclusion, gluteal muscle of RER-susceptible Standardbreds is characterized by perturbation of pathways for calcium regulation, cellular/oxidative stress, inflammation, and cellular regeneration weeks after an episode of rhabdomyolysis that could represent therapeutic targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.