Abstract
The Etendeka large igneous province in central Namibia is believed to be caused by widespread melting of the Tristan/Gough mantle plume head between ∼137 and 123 Ma ago. To explain the observed compositional variations of the Etendeka flood basalts, a laterally-zoned plume head has been proposed. Here we present new (major and trace element and Sr-Nd-Pb-O-C isotope) geochemical data from the Okorusu and Messum carbonatitic and silica-undersaturated rocks (both 127Ma). Okorusu carbonatites, located at the far eastern end of the Etendeka province, have a Gough-type enriched mantle one (EM1) composition, consistent with derivation from a common source with the northern Etendeka flood basalts, Walvis Ridge and Gough (southern) hotspot subtrack of the southern Atlantic Guyot Province including Gough Island. The Messum basanite, erupted directly after the Etendeka event near the central coast of western Namibia, has a different EM1 type flavor (with more radiogenic Nd, less radiogenic Sr and thorogenic Pb isotopes), similar to the Doros, Tafelkop and Horingbaai formations of the Etendeka flood basalts. Combining our new findings with published data from flood basalts, carbonatites and silica-undersaturated rocks from the region, we propose a concentric zonation model for the postulated plume head with the isotopically Gough-type EM1 plume mantle enclosing a blob of Doros-type EM1 plume mantle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.