Abstract

Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by loss-of-function mutations in NF1 gene, which encodes a GTPase activating protein for RAS. NF1 affects multiple systems including brain and is highly associated with cognitive deficits such as learning difficulties and attention deficits. Previous studies have suggested that GABAergic inhibitory neuron is the cell type primarily responsible for the learning deficits in mouse models of NF1. However, it is not clear how NF1 mutations selectively affect inhibitory neurons in the central nervous system. In this study, we show that the expression level of Nf1 is significantly higher in inhibitory neurons than in excitatory neurons in mouse hippocampus and cortex by using in situ hybridization. Furthermore, we also found that NF1 is enriched in inhibitory neurons in the human cortex, confirming that the differential expressions of NF1 between two cell types are evolutionarily conserved. Our results suggest that the enriched expression of NF1 in inhibitory neurons may underlie inhibitory neuron-specific deficits in NF1.

Highlights

  • Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by loss-of-function mutations in NF1 gene, which encodes a GTPase activating protein for RAS

  • Consistent with the previous RNA-seq result [17], we found that the Nf1 expression level is significantly higher in inhibitory neurons than in excitatory neurons in the mouse hippocampus (Fig. 1a and b)

  • To verify that NF1 expression is higher in inhibitory neurons than in excitatory neurons in human, we examined the NF1 mRNA expression in human cortex

Read more

Summary

Introduction

Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by loss-of-function mutations in NF1 gene, which encodes a GTPase activating protein for RAS. We have shown that the genes in RAS-ERK signaling network are differentially expressed between excitatory and inhibitory neurons in mouse hippocampus by performing cell type-specific transcriptome analyses [17].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call