Abstract

This paper discusses biplots of the between-set correlation matrix obtained by canonical correlation analysis. It is shown that these biplots can be enriched with the representation of the cases of the original data matrices. A representation of the cases that is optimal in the generalized least squares sense is obtained by the superposition of a scatterplot of the canonical variates on the biplot of the between-set correlation matrix. Goodness of fit statistics for all correlation and data matrices involved in canonical correlation analysis are discussed. It is shown that adequacy and redundancy coefficients are in fact statistics that express the goodness of fit of the original data matrices in the biplot. The within-set correlation matrix that is represented in standard coordinates always has a better goodness of fit than the within-set correlation matrix that is represented in principal coordinates. Given certain scalings, the scalar products between variable vectors approximate correlations better than the cosines of angles between variable vectors. Several data sets are used to illustrate the results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.