Abstract

The emergence of drug resistant strains of important human pathogens has created an urgent necessity to find new targets and novel antitubercular agents. According to the literature survey, we noticed that enoyl ACP reductase is one of the most promising targets. This enzyme is the most important catalyst for the FAS II synthesis of mycolic acid, which is the most essential component of the mycobacterial cell wall. This review summarizes the progress made in the design of enoyl ACP reductase inhibitors and the role played by 3D-structure of the enzyme in drug design process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.