Abstract

The rapid development of flexible electronics and soft robotics has an urgent demand for materials with wide-range switchable stiffness. Here, we report a polymer network that can isochorically and reversibly switch between soft ionogel and rigid plastic accompanied by a gigantic stiffness change from about 600 Pa to 85 MPa. This transition is realized by introducing polymer vitrification to regulate the liquid–liquid phase separation, namely the Berghmans’ point in the phase diagram of binary gel systems. Regulating the Lewis acid-base interactions between polymer and ionic liquids, the stiffness-changing ratio of polymer network can be tuned from 10 to more than 105. These wide-range stiffness-changing ionogels show excellent shape adaptability and reconfigurability, which can enhance the interfacial adhesion between ionogel and electrode by an order of magnitude and reduce interfacial impedance by 75%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.