Abstract

Wool samples were dyed with madder and alum, copper, and iron salts at different concentration by pre-mordanting (MD) and simultaneous mordanting (M+D) procedures. Samples were artificially aged to identify the influence of the mordant on the madder chromophores photodegradation. A set of analytical techniques was used for complete characterisation of the dyed fibres before and after light exposure, which included colour and chromophore analysis (colourimetry and LC-ESI-MS/MS analysis), determination of mordant ions amounts in the fibres (FAAS and ICP-OES analysis), morphological characterisation of the fibres and punctual chemical analysis (SEM-EDS studies).Fibre colour hue was found to be dependent on the mordant ion nature, mordant bath concentration and dyeing procedure. Mordant ion quantification showed that the uptake of metal ion by the fibres is relatively small, with the Cu ion presenting the highest affinity for the fibre. MD method yields fibres with higher amounts of metal ions and larger chromophore chromatographic peak areas corresponding, in general, to stronger colour hues. Photodegradation was more severe in alum mordant samples and in the first 480h of light exposure. Chromophore degradation rates are unequal and dependent on the mordant nature, contributing for colour changes observed after light exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.