Abstract
The real-time health monitoring system is a promising body area network application to enhance the safety of firefighters when they are working in harsh and dangerous environments. Other than monitoring the physiological status of the firefighters, on-body monitoring networks can be also regarded as a candidate solution of motion detection and classification. In this paper, we consider motion classification with features obtained from the on-body radio frequency (RF) channel. Various relevant RF features have been identified and a support vector machine (SVM) has been implemented to facilitate human motion classification. In particular, we distinguish the most frequently appearing human motions of firefighters including standing, walking, running, lying, crawling, climbing, and running upstairs with an average true classification rate of 88.69 percent. Classification performance has been analyzed from three different perspectives including typical classification results, effects of candidate human motions, and effects of on-body sensor locations. We prove that even a subset of available RF features provides an acceptable classification rate, which may result in less computational cost and easier implementation by using our proposed scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.