Abstract

In this paper, receding horizon model predictive control (RHMPC) of nonlinear systems subject to input and state constraints is considered. We propose to estimate the terminal region and the terminal cost off-line using support vector machine learning. The proposed approach exploits the freedom in the choices of the terminal region and terminal cost needed for asymptotic stability. The resulting terminal regions are large and, hence provide for large domains of attraction of the RHMPC. The promise of the method is demonstrated with two examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.