Abstract

From a visual point of view, the shape of an image is mainly determined by the edges. Conventional polynomial interpolation of image enlarging methods would produce blurred edges, while edge-directed interpolation based methods would cause distortion in the non-edge areas. A new method for image enlarging is presented. The image is enlarged in two steps. In the first step, a fitting surface is constructed to interpolate the image data. To remove the zigzagging artifact, for each pixel, a fitting patch is constructed using edge information as constraints. The combination of all the patches forms the fitting surface which has the shape suggested by image data. Each point on the fitting surface can be regarded as a sampling point taken from a unit square domain, which means that when the fitting surface is used to enlarge the image, each sampling domain of the enlarged pixels is also a unit square, causing the enlarged image to lose some details. To make the enlarged image keep the details as many as possible, the sampling domain of the enlarged pixels should be less than a unit square. Then, in the second step, using the points taken from the fitting surface, new pixels are computed using constrained optimization technique to form the enlarged image, and the size of the sampling domain of the enlarged pixels is inversely proportional to the size of the enlarged image. The image enlarged by the new method has a quadratic polynomial precision. Comparison results show that the new method produces resized image with better quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.