Abstract

We report on the theoretical analysis of the enlargement of locally resonant acoustic band gap in two-dimensional sonic crystals based on a double-side stubbed plate. A significant enlargement of the relative bandwidth by a factor of 2 compared to the classical one-side stubbed plates is obtained and discussed. Based on an efficient finite element method, we show that this band gap enlargement is due to the coupling between the same nature of the resonant eigenmodes (in-plane or out-of-plane) of the stubs located in each plate side, producing a strong interaction with the plate’s Lamb modes. Acoustic displacement fields are computed to illustrate such mechanism and to discuss the physics behind it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.