Abstract

The purpose of this paper is to relax the terminal conditions typically used to ensure stability in model predictive control, thereby enlarging the domain of attraction for a given prediction horizon. Using some recent results, we present novel conditions that employ, as the terminal cost, the finite-horizon cost resulting from a nonlinear controller u=−sat( Kx) and, as the terminal constraint set, the set in which this controller is optimal for the finite-horizon constrained optimal control problem. It is shown that this solution provides a considerably larger terminal constraint set than is usually employed in stability proofs for model predictive control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call