Abstract

The resonance interaction that takes place in planar nanochannels between pairs of excited state atoms is explored. We consider interactions in channels of silica, zinc oxide and gold. The nanosized channels induce a dramatically different interaction from that in free space. Illustrative calculations for two lithium and cesium atoms, demonstrate that there is a short range repulsion followed by long range attraction. The binding energy is strongest near the surfaces. The size of the enlarged molecule is biggest at the center of the cavity and increases with channel width. Since the interaction is generic, we predict that enlarged molecules are formed in porous structures, and that the molecule size depends on the size of the nanochannels

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.