Abstract

In order to record multi-site electroretinogram (ERG) responses in isolated carp retinae, we utilized three-dimensional (3D), extracellular, 3.5-μm-diameter silicon (Si) probe arrays fabricated by the selective vapor–liquid–solid (VLS) growth method. Neural recordings with the Si microprobe exhibit low signal-to-noise (S/N) ratios of recorded responses due to the high-electrical-impedance characteristics of the small recording area at the probe tip. To increase the S/N ratio, we designed and fabricated enlarged gold (Au) tipped Si microprobes (10-μm-diameter Au tip and 3.5-μm-diameter probe body). In addition, we demonstrated that the signal attenuation and phase delay of ERG responses recorded via the Si probe can be compensated by the inverse filtering method. We conclude that the reduction of probe impedance and the compensation of recorded signals are useful approaches to obtain distortion-free recording of neural signals with high-impedance microelectrodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.