Abstract

The combination of light sheet fluorescence microscopy (LSFM) and the optical clearing method can achieve fast three-dimensional high-resolution imaging. However, there is an essential contradiction between the field of view (FoV) and spatial resolution. Also, aberration and scattering still exist after tissue clearing, which seriously limits the imaging depth of LSFM. Here we propose a Schwartz modulation method and implement it in LSFM based on a quasi-Bessel beam to enlarge the imaging FoV without sacrificing its spatial resolution. The simulation results show that the FoV of the LSFM is enlarged by a factor of 1.73 compared to the Bessel beam. The capability of extremely fast decay along the optical axis makes Schwartz modulation more tolerant for scattering, indicating potential applications for deep tissue imaging. Also, the capability of sidelobe suppression effectively decreases unnecessary fluorescence excitation and photobleaching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.