Abstract

This study explores the potential of zinc and silver nanocomposites, synthesized with β-lactoglobulin, a whey protein, in promoting wound healing, using the C57BL/6J mouse model. Our research is distinct in its dual focus: assessing the antimicrobial efficacy of these nanocomposites and their impact on wound healing processes. The antimicrobial properties were investigated through minimum inhibitory concentration (MIC) assessments and colony-forming unit (CFU) tests, providing insights into their effectiveness against wound-associated microorganisms. Notably, the formulation's effective antibacterial concentration did not exhibit toxicity to mouse fibroblasts. A key aspect of our methodology involved the use of a stereoscopic microscope for detailed monitoring of the wound closure process. Additionally, the distribution and potential systemic effects of the zinc and silver ions were analyzed using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). This analysis was crucial in evaluating metal ion absorption through the wound site and estimating any toxic effects on the body. Our findings are particularly significant in the field of regenerative medicine. Transmission electron microscopy (TEM) revealed that the tested nanocomposites notably enhanced collagen deposition, a vital component in the wound healing process. Furthermore, a reduction in glycogen levels in hepatocytes was observed following treatment with these metal-protein dressings. This novel finding warrants further investigation. Overall, our findings highlight the diverse roles of zinc and silver nanocomposites in wound healing. This study not only contributes to our understanding of metal-protein complexes in tissue regeneration but also opens new avenues for research into the delivery mechanisms of such treatments for hard-to-heal wounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.