Abstract
Accidents occur in the construction industry as a result of non-compliance with personal protective equipment (PPE). As a result of diverse environments, it is difficult to detect PPE automatically. Traditional image detection models like convolutional neural network (CNN) and vision transformer (ViT) struggle to capture both local and global features in construction safety. This study introduces a new approach for automating the detection of personal protective equipment (PPE) in the construction industry, called PPE_Swin. By combining global and local feature extraction using the self-attention mechanism based on Swin-Unet, we address challenges related to accurate segmentation, robustness to image variations, and generalization across different environments. In order to train and evaluate our system, we have compiled a new dataset, which provides more reliable and accurate detection of personal protective equipment (PPE) in diverse construction scenarios. Our approach achieves a remarkable 97% accuracy in detecting workers with and without PPE, surpassing existing state-of-the-art methods. This research presents an effective solution for enhancing worker safety on construction sites by automating PPE compliance detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.