Abstract

In this work, we analyze the secrecy rate in a cooperative network, where a source node is assisted by relay nodes via cooperative jamming for delivering a secret message to the destination in the presence of an eavesdropper node. We consider the availability of both full and partial channel state information (CSI), and we take into account average power limitation at the relays as we formulate the rate maximization problem as a primal-dual problem. We derive the closed form solution for the full CSI case, and we show that the optimal solution allows the transmission of only one relay. For the partial CSI case, we define the concept of secrecy outage, where some of packets are intercepted by the eavesdropper, and we derive the secrecy outage probability and throughput in terms of average channel statistics. Due to the high nonlinearity of the secrecy throughput term, we propose a gradient update algorithm for obtaining the optimal power solutions for the partial CSI case. Our simulations demonstrate the gains of cooperative jamming over direct transmission for both full and partial CSI cases, where it is shown that the secrecy rate of the direct transmission is increased significantly, by %20−%80, when CJ is employed with our optimal power assignment algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call