Abstract

Bonded orthodontic retainers with wires embedded in composite resin are commonly used for orthodontic retention. The purpose of this study was to test, in vitro, various wire surface treatments to determine the optimal method of enhancing the wire-composite bond strength. Coaxial wires and stainless steel wires with different surface treatments were bonded to bovine enamel and then pulled along their long axes with an Instron universal testing machine. Wire surface treatments included placing a right-angle bend in the wire, microetching the wire, and treating the wire with adhesion promoters; combinations of treatments were also examined. The results demonstrated a 24-fold increase in the wire-composite bond strength of wire that was microetched (sandblasted), compared with that of untreated straight wire. The difference between the amount of force required to break the bond produced by microetching alone (246.1 ± 46.0 MPa) and that required for the bonds produced by the retentive bend (87.8 ± 16.3 MPa), the adhesion promoters (silane, 11.0 ± 3.1 MPa; Metal Primer, 28.5 ± 15.8 MPa), or for any combination of surface treatments, was statistically significant. Microetching a stainless steel wire produced a higher wire-composite bond strength than that obtained from a coaxial wire (113.5 ± 27.5 MPa). The results of this study indicate that microetching or sandblasting a stainless steel wire significantly increases the strength of the wire-composite bond. (Am J Orthod Dentofacial Orthop 2001;119:625-31)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.