Abstract
Forecasting wind power generation is crucial for ensuring grid security and the competitiveness of the power market. This paper presents an innovative approach that combines deep learning (DL) with Teaching-Learning-Based Optimization (TLBO) to predict wind power output accurately. Using a real dataset spanning diverse weather conditions and turbine specifications collected between January 2018 and March 2020, the study employs 18 features as inputs, including Ambient Temperature, Wind Direction, and Wind Speed, with real power output in kW as the target variable. Metaheuristic algorithms including Particle Swarm Optimization (PSO), Barnacles Mating Optimizer (BMO), Biogeography-Based Optimization (BBO), and Firefly Algorithm (FA) are comprehensively compared for model optimization. TLBO-DL consistently provides forecasts that closely align with actual wind power values across instances, substantiated by its low RMSE of 98.7601, indicating effective minimization of errors in wind power forecasting. Comparative analysis with other algorithms reveals that TLBO-DL outperforms PSO-DL (RMSE: 102.6627), BMO-DL (RMSE: 132.4839), BBO-DL (RMSE: 103.8517), and FA-DL (RMSE: 104.7282) in terms of overall forecasting accuracy. The variations in the performance of other algorithms across instances highlight the robustness and effectiveness of TLBO-DL in achieving accurate wind power forecasts. Overall, TLBO-DL emerges as a reliable and superior algorithm for wind power forecasting, consistently providing accurate forecasts across a range of instances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.