Abstract
The Web is an open and free environment for people to publish and get information. Everyone on the Web can be either an author, a reader, or both. The language of the Web, HTML (Hypertext Markup Language), is mainly designed for information display, not for semantic representation. Therefore, current Web search engines usually treat Web pages as unstructured documents, and traditional information retrieval (IR) technologies are employed for Web page parsing, indexing, and searching. The unstructured essence of Web pages seriously blocks more accurate search and advanced applications on the Web. For example, many sites contain structured information about various products. Extracting and integrating product information from multiple Web sites could lead to powerful search functions, such as comparison shopping and business intelligence. However, these structured data are embedded in Web pages, and there are no proper traditional methods to extract and integrate them. Another example is the link structure of the Web. If used properly, information hidden in the links could be taken advantage of to effectively improve search performance and make Web search go beyond traditional information retrieval (Page, Brin, Motwani, & Winograd, 1998, Kleinberg, 1998). Although XML (Extensible Markup Language) is an effort to structuralize Web data by introducing semantics into tags, it is unlikely that common users are willing to compose Web pages using XML due to its complication and the lack of standard schema definitions. Even if XML is extensively adopted, a huge amount of pages are still written in the HTML format and remain unstructured. Web structure mining is the class of methods to automatically discover structured data and information from the Web. Because the Web is dynamic, massive and heterogeneous, automated Web structure mining calls for novel technologies and tools that may take advantage of state-of-the-art technologies from various areas, including machine learning, data mining, information retrieval, and databases and natural language processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.