Abstract

Machine learning-based gait systems facilitate the real-time control of gait assistive technologies in neurological conditions. Improving such systems needs the identification of kinematic signals from inertial measurement unit wearables (IMUs) that are robust across different walking conditions without extensive data processing. We quantify changes in two kinematic signals, acceleration and angular velocity, from IMUs worn on the frontal plane of bilateral shanks and thighs in 30 adolescents (8-18 years) on a treadmills and outdoor overground walking at three different speeds (self-selected, slow, and fast). Primary curve-based analyses included similarity analyses such as cosine, Euclidean distance, Poincare analysis, and a newly defined bilateral symmetry dissimilarity test (BSDT). Analysis indicated that superior-inferior shank acceleration (SI shank Acc) and medial-lateral shank angular velocity (ML shank AV) demonstrated no differences to the control signal in BSDT, indicating the least variability across the different walking conditions. Both SI shank Acc and ML shank AV were also robust in Poincare analysis. Secondary parameter-based similarity analyses with conventional spatiotemporal gait parameters were also performed. This normative dataset of walking reports raw signal kinematics that demonstrate the least to most variability in switching between treadmill and outdoor walking to help guide future machine learning models to assist gait in pediatric neurological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.