Abstract
The incorporation of machine learning (ML) has yielded substantial benefits in detecting nonlinear patterns across a wide range of applications, including offshore engineering. Existing ML works, specifically supervised regression models, have not undergone exhaustive scrutiny, and there are no potential or concurrent models for improving the performance of wave energy converter (WEC) devices. This study employs supervised regression ML models, including multi-layer perceptron, support vector regression, and XGBoost, to optimize the geometric aspects of an asymmetric WEC inspired by Salter’s duck, based on key parameters. These important parameters, the ballast weight and its position, vary along a guided line within the available geometric resilience of the asymmetric WEC. Each supervised regression ML model was fine-tuned through hyperparameter optimization using Grid cross-validation. When evaluating the performance of each ML model, it became evident that the tuned hyperparameters of XGBoost led to predictions that strongly aligned with the actual values compared to other models. Furthermore, the study extended to assess the performance of the optimized WEC at the designated deployment test site location.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.