Abstract
A new porous metal-organic framework (MOF), barium tetraethyl-1,3,6,8-pyrenetetraphosphonate (CALF-25), which contains a new phosphonate monoester ligand, was synthesized through a hydrothermal method. The MOF is a three-dimensional structure containing 4.6 Å × 3.9 Å rectangular one-dimensional pores lined with the ethyl ester groups from the ligand. The presence of the ethyl ester groups makes the pores hydrophobic in nature, as determined by the low heats of adsorption of CH(4), CO(2), and H(2)O (14.5, 23.9, and 45 kJ mol(-1), respectively) despite the polar and acidic barium phosphonate ester backbone. The ethyl ester groups within the pores also protect CALF-25 from decomposition by water vapor, with crystallinity and porosity being retained after exposure to harsh humid conditions (90% relative humidity at 353 K). The use of phosphonate esters as linkers for the construction of MOFs provides a method to protect hydrolytically susceptible coordination backbones through kinetic blocking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.