Abstract

Solar power systems have been growing globally to replace fossil fuel-based energy and reduce greenhouse gases (GHG). In addition to panel efficiency deterioration and contamination, the produced power of photovoltaic (PV) systems is intermittent due to the dependency on weather conditions, causing reliability and resiliency issues. Monitoring system parameters can help in predicting faults in time for corrective action to be taken or preventive maintenance to be applied. However, classical monitoring approaches have two main problems: neither local nor centralized monitoring support distributed PV power systems nor provide remote access capability. Therefore, this paper presents an appraisal of a remote monitoring system of PV power generation stations by utilizing the Internet of Things (IoT) and a state-of-the-art tool for virtual supervision. The proposed system allows real-time measurements of all PV system parameters, including surrounding weather conditions, which are then available at the remote control center to check and track the PV power system. The proposed technique is composed of a set of cost-effective devices and algorithms, including a PV power conditioning unit (PCU); a sensor board for measuring the variables that influence PV energy production such as irradiance and temperature, using a communication module based on Wi-Fi for data transmission; and a maximum power point tracking (MPPT) controller for enhancing the efficiency of the PV system. For validating the proposed system, different common scenarios of PV panel conditions including different shading circumstances were considered. The results show that accurate, real-time monitoring with remote access capabilities can provide timely information for predicting and diagnosing the system condition to ensure continued stable power generation and management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.