Abstract

Wood, an environmentally friendly construction material, is characterized by a critical attribute that significantly influences its mechanical properties and durability: its moisture absorption behavior. This study expands upon an existing one-dimensional model to develop an innovative two-dimensional numerical framework for simulating moisture propagation within wood. Utilizing the finite difference method, this approach offers a more detailed analysis of moisture behavior in wood structures. The research adopts an inverse modeling technique, integrating a simplex optimization algorithm programmed in VBA software. This algorithm is employed to deduce diffusion parameters from the evolution of moisture content over time. Focusing on the analysis of moisture diffusion parameters, the study examines both longitudinal and transverse directions in two temperate species (Beech and Fir) and two tropical species (Moabi and Ozigo). The findings provide insightful data on the hygroscopic behavior of these woods, revealing significant distinctions between temperate and tropical species. This research offers valuable information for the application of these wood species in construction and other fields, enhancing the understanding of their moisture-related properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.