Abstract

The present study investigates the fatigue behavior of granite and red sandstone under coupled static and cyclic loading. Experimental results reveals a three-stage evolution trend for the deformation modulus, Young's modulus, peak strain, residual strain, dissipated energy as a function of the absolute cycle. Acoustic emission (AE) rate also exhibits a three-phase stage, including the initial phase, uniform velocity phase, and accelerated phase. To explain the mechanical responses and fracture mechanisms related to rock fatigue, this study built a micromechanics-based damage model that adopts a modified Paris law and considers both the effect of static stress and stress amplitude. The theoretical model successfully reflects the effect of static loading history and reproduces the three-stage evolution of residual strain during rock fatigue. The SIF deduced by the theoretical model exhibits a distinct behavior: it initially decreases during the first few cycles, stabilizes at a lower value, and subsequently undergoes a significant increase as it approaches the final cycles. The internal cause behind the three-stage evolution of crack growth rate, AE rate, and mechanical properties is attributed to subcritical crack growth during cyclic loading. Finally, the theoretical model successfully characterizes the effect of static stress and stress amplitude of cyclic loads on fatigue damage evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call