Abstract
Compared to the traditional machine reading comprehension (MRC) with limitation to the information in a passage, knowledge-driven MRC tasks aim to enable models to answer the question according to text and related commonsense knowledge. Although pre-trained Transformer-based language models (TrLMs) such as BERT and Roberta, have shown powerful performance in MRC, external knowledge such as unspoken commonsense and world knowledge still cannot be used and explained explicitly. In this work, we present three simple yet effective injection methods integrated into the structure of TrLMs to fine-tune downstream knowledge-driven MRC tasks with off-the-shelf commonsense representations. Moreover, we introduce a mask mechanism for a token-level multi-hop relationship searching to filter external knowledge. We have conducted extensive experiments on DREAM and CosmosQA, two prevalent knowledge-driven datasets. Experimental results indicate that the incremental TrLMs have outperformed the baseline systems by 1%-4.1% with a fewer computational cost. Further analysis shows the effectiveness of the proposed methods and the robustness of the incremental model in the case of an incomplete training set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.