Abstract

In traditional Chinese medicine (TCM), artificial intelligence (AI)-assisted syndrome differentiation and disease diagnoses primarily confront the challenges of accurate symptom identification and classification. This study introduces a multi-label entity extraction model grounded in TCM symptom ontology, specifically designed to address the limitations of existing entity recognition models characterized by limited label spaces and an insufficient integration of domain knowledge. This model synergizes a knowledge graph with the TCM symptom ontology framework to facilitate a standardized symptom classification system and enrich it with domain-specific knowledge. It innovatively merges the conventional bidirectional encoder representations from transformers (BERT) + bidirectional long short-term memory (Bi-LSTM) + conditional random fields (CRF) entity recognition methodology with a multi-label classification strategy, thereby adeptly navigating the intricate label interdependencies in the textual data. Introducing a multi-associative feature fusion module is a significant advancement, thereby enabling the extraction of pivotal entity features while discerning the interrelations among diverse categorical labels. The experimental outcomes affirm the model's superior performance in multi-label symptom extraction and substantially elevates the efficiency and accuracy. This advancement robustly underpins research in TCM syndrome differentiation and disease diagnoses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.