Abstract

Tool wear is an important concern in the manufacturing sector that leads to quality loss, lower productivity, and increased downtime. In recent years, there has been a rise in the popularity of implementing TCM systems using various signal processing methods and machine learning algorithms. In the present paper, the authors propose a TCM system that incorporates the Walsh-Hadamard transform for signal processing, DCGAN aims to circumvent the issue of the availability of limited experimental dataset, and the exploration of three machine learning models: support vector regression, gradient boosting regression, and recurrent neural network for tool wear prediction. The mean absolute error, mean square error and root mean square error are used to assess the prediction errors from three machine learning models. To identify these relevant features, three metaheuristic optimization feature selection algorithms, Dragonfly, Harris hawk, and Genetic algorithms, were explored, and prediction results were compared. The results show that the feature selected through Dragonfly algorithms exhibited the least MSE (0.03), RMSE (0.17), and MAE (0.14) with a recurrent neural network model. By identifying the tool wear patterns and predicting when maintenance is required, the proposed methodology could help manufacturing companies save money on repairs and replacements, as well as reduce overall production costs by minimizing downtime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.