Abstract

Thrombophilia, a predisposition to thrombosis, poses significant diagnostic challenges due to its multi-factorial nature, encompassing genetic and acquired factors. Current diagnostic paradigms, primarily relying on a combination of clinical assessment and targeted laboratory tests, often fail to capture the complex interplay of factors contributing to thrombophilia risk. This paper proposes an innovative artificial intelligence (AI)-based methodology aimed to enhance the prediction of thrombophilia risk. The designed multidimensional risk assessment model integrates and elaborates through AI a comprehensive collection of patient data types, including genetic markers, clinical parameters, patient history, and lifestyle factors, in order to obtain advanced and personalized explainable diagnoses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.