Abstract

In photon-deficient, noncollective Thomson scattering diagnostics, filter polychromators are typically employed in the spectral analysis of Thomson-scattered signals to achieve acceptable signal-to-noise performance. Currently, the most common polychromator filter configuration employs a set of single-passband optical filters that define individual spectral channels. Here, we introduce a new spectral analysis method for Thomson scattering based on spectral filters with multiple passbands, referred to as Thomson scattering spectral multiplexing. Implementing multi-bandpass spectral filters on polychromators increases the achievable range of electron temperature measurement for a given number of filters employed. In addition, Thomson scattering spectral multiplexing reduces systematic measurement uncertainty, with fewer required spectral channels, thereby decreasing light loss from reduced optical element interactions. A multi-bandpass filter set, optimized by a genetic algorithm, has been successfully installed and tested on the Helically Symmetric eXperiment (HSX), demonstrating the benefits of the Thomson scattering spectral multiplexing method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.