Abstract

The limited thermostability of Yarrowia lipolytica lipase 2 (Lip2) hampers its industrial application. To improve its thermostability, we combined single disulfide bonds which our group identified previously. In this study, combining different regional disulfide bonds had greater effect than combining same regional disulfide bonds. Furthermore, mutants with 4, 5, and 6 disulfide bonds exhibited dramatically enhanced thermostability. Compared with the wild-type, sextuple mutant 6s displayed a 22.53 and 31.23 ℃ increase in the melting temperature (Tm) and the half loss temperature at 15 min (T15 50), respectively, with greater pH stability and a wider reaction pH range. Molecular dynamics simulation revealed that multiple disulfide bonds resulted in more rigid structures of mutants 4s, 5s and 6s, and prolonged enzyme unfolding times. Moreover, secretions of mutants 5s and 6s were significantly increased by 60% and 80% by co-expressing with the chaperone protein disulfide isomerase (PDI), which mitigated the reduced production issue caused by multiple disulfide bonds. Results of this study indicated that enhanced heat endurance giving more potential for industrial application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.