Abstract
MNiSn (M = Ti, Zr, and Hf) half-Heusler (HH) compounds are widely studied n-type thermoelectric (TE) materials for power generation. Most studies focus on Zr- and Hf-based compounds due to their high thermoelectric performance. However, these kinds of compositions are not cost-effective. Herein, the least expensive alloy in this half-Heusler family—TiNiSn—is investigated. Modulation doping of half-metallic MnNiSb in the TiNiSn system is realized by using spark plasma sintering. It is found that MnNiSb dissolves into the TiNiSn matrix and forms a heavily doped Ti1–xMnxNiSn1–xSbx phase, which leads to largely enhanced carrier concentration and also slight increase of carrier mobility. As a result, the electrical conductivity and power factor of the modulation doped compounds are greatly improved. A maximum power factor of 45 × 10–4 W K–2 m–1 is obtained at 750 K for the modulation doping system (TiNiSn)1–x + (MnNiSb)x with x = 0.05, which is one of the highest reported values in literature for TiNiSn systems. Furthermore, the lattice thermal conductivity is also suppressed due to the enhanced phonon scattering. Beneficial from the improved power factor and suppressed lattice thermal conductivity, a peak zT of 0.63 is obtained at 823 K for x = 0.05, which is an ∼70% increase compared to the peak zT of TiNiSn. These results highlight the potential application of inexpensive TiNiSn-based TE materials and the effectiveness of modulation doping in enhancing the TE performance of HH compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.