Abstract
P-type Mg3Sb2-based Zintls have attracted considerable interest in the thermoelectric (TE) field due to their environmental friendliness and low cost. However, compared to their n-type counterparts, they show relatively low TE performance, limiting their application in TE devices. In this work, we simultaneously introduce Bi alloying at Sb sites and Ag doping at Mg sites into the Mg3Sb2 to cooperatively optimize the electrical and thermal properties for the first time, acquiring the highest ZT value of ∼0.85 at 723 K and a high average ZT of 0.39 in the temperature range of 323–723 K in sample Mg2.94Ag0.06Sb1.9Bi0.1. The first-principle calculations show that the co-doping of Ag and Bi can shift the Fermi level into the valence band and narrow the band gap, resulting in the increased carrier concentration from 3.50 × 1017 cm−3 in the reference Mg3Sb0.9Bi0.1 to ∼7.88 × 1019 cm−3 in sample Mg2.94Ag0.06Sb0.9Bi0.1. As a result, a remarkable power factor of ∼778.9 µW m−1 K−2 at 723 K is achieved in sample Mg2.94Ag0.06Sb0.9Bi0.1. Meanwhile, a low lattice thermal conductivity of ∼0.48 W m−1 K−1 at 723 K is also obtained with the help of phonon scattering at the distorted lattice, point defects, and nano-precipitates in sample Mg2.94Ag0.06Sb0.9Bi0.1. The synergistic effect of using the multi-element co-doping/-alloying to optimize electrical properties in Mg3Sb2 holds promise for further improving the TE performance of Zintl phase materials or even others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.